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A Direct Test for Changing Trend 

Chia-Shang James Chu 
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Halbert White 
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We consider tests for changing trend that do not require prior knowledge about the location of 
the changepoint. The limiting distribution is derived from the functional central limit theorem and 
the critical value from the hitting probability of a Brownian bridge. Applying a test sensitive to 
the alternative of trend stationarity with structural breaks, we find that for real gross national 
product, real per capita gross national product, and real wages before World War I1 the hypothesis 
of trend stationarity is rejected. 
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Parameter constancy is a necessary condition for both 
accurate time series forecasting and the practice of pol- 
icy evaluation. Because of the importance of param- 
eter constancy, many tests have been suggested for it 
based on different formulations of the alternative hy- 
pothesis. Leading examples are the Chow (1960) test 
for a one-time structural change; the Brown, Durbin, 
and Evans (1975) CUSUM (cumulative sum) test for 
change at an unknown point in time; and the Lamotte 
and McWhorter (1978) test for time-varying parame- 
ters, where the changing parameters follow some sto- 
chastic process under the alternative, often the empir- 
ically appealing random-walk process (see also Nyblom 
1989). 

Recently, the theory of weak convergence and the 
functional central limit theorem (FCLT) have proved 
useful in obtaining limiting distributions of tests for pa- 
rameter constancy. Successful efforts include (a) the 
fluctuation test of Sen (1980) and Ploberger, Kramer, 
and Kontrus (1989), which detects changing parameters 
in a linear regression model by comparing the param- 
eter estimates from a partial sample with those from 
the whole sample; (b) the tests of James, James, and 
Siegmund (1987), who derived tests for one-time struc- 
tural change in a simple location model and compared 
the power of their test to other competing tests; and 
(c) the tests of Andrews (1990), who derived the limiting 
distributions for the sequential likelihood ratio test (a 
la Quandt 1960), the maximal Wald-type test, and the 
Lagrange-multiplier-type test. These test statistics have 
been proved to have well-defined asymptotic distribu- 
tions in the space of continuous function, and their 
critical values are determined from the hitting proba- 
bility of the Browian bridge or tied down Bessel process. 
Quite significantly, Andrews also showed that these 
tests for parameter constancy against the alternative 
of one-time structural change in fact have nontrivial 

asymptotic local power against all alternatives of pa- 
rameter nonconstancy. All of these results are limited 
to models with nontrending regressors. 

For regression models with trending regressors, Kim 
and Siegmund (1989) considered tests for models with 
normal iid errors in which the regressor can be taken 
as a function of time. Hansen (1990) studied the Chow 
test for parameter constancy in regression models that 
include both trending and nontrending regressors. A 
novelty of Hansen's result is that instead of using the 
maximum Chow statistic as the basis for a test he pro- 
posed using the average of the sequence of Chow sta- 
tistics. Following a limited Monte Carlo experiment, 
Hansen claimed that the mean-Chow test is preferable 
to the max-Chow test in terms of size accuracy and 
test power. 

The main result of this article is that the same test as 
in the regression with nontrending regressors, with a 
different time scaling, can be employed for regression 
with deterministic and stochastic trends. We propose 
new tests for the stability of trend slope and intercept. 
Critical values of our new tests can be determined easily 
from the hitting probability of the Brownian-bridge pro- 
cess. A test for the constancy of cointegration is also 
derived as a straightforward extension. 

The rest of this article is organized as follows. Sec- 
tion 1.1 focuses on a test for constant trend slope, in 
which a time rescaling technique due to Doob (1949) 
is employed to develop surprisingly simple asymptotics 
for a test of constancy in the trend coefficient. Section 
1.2 contains a test for the constancy in trend intercept. 
Section 2 reports Monte Carlo experiments explor- 
ing the size and power of these tests. Section 3, as an 
illustration, applies the test for trend constancy to 
study the persistence of 14 U.S. macroeconomic time 
series. Section 4 ends the article with some brief 
remarks. 
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1. ASYMPTOTIC TESTING VIA BROWNIAN 
MOTION AND THE BROWNIAN BRIDGE 

1.1 Testing for a Change in Trend Slope 

Consider a trend-stationary process Ho : Yt = a, + 
Pot + E, (t = 1, 2, . . ., n). The goal is to detect a 
change in the trend function at some unknown point in 
time. The simplest alternative is that of a single shift at 
an unknown breakpoint m, 

Y , = a 2 + / 3 , t + ~ , ,  t = m + l ,  . . . ,  n. 

We assume that {E,/U~} satisfies the FCLT. By this 
-1 -112 ~ [ n h ]we mean that u;ln-l"SInA1 = uo n t = ~E~+W(A), 

A E [0, 11, where W(.) is the standard Brownian motion 
and 4= lim,, n-'E(S2) is nonzero and finite. The 
notations [x] and + stand for the integer part of x and 
weakly converges to, respectively. The FCLT require- 
ment is weak and applies to a fairly wide class of se- 
quences {E~/U~} (see Phillips 1987; Wooldridge and White 
1988). 

A test with power against this and other alternatives 
can be based on the least squares estimators 

where A, = k C:=, t2 - (Cfr1 t)2 = (k4 - k2)/12. 
Substituting Yt = a, + Pot + E, into pk gives 

- (it) [i(a0 + Pot + &I)I1t = l  t = l  

so that 

Suppose for the moment that Po and 4are known. 
We will replace the unknown Po and a2, by consistent 
estimators later. Define a random function in the space 
D[O, 11with the Skorohod topology (Billingsley 1968, 
sec. 14) by 

Zn(A) = (6~o)-1n3"([n~l~n)3(4[,A]- Po). (1) 

Now 

n3"([n~lln)3t8[nA]- Po) = n-312[nA13([nAllA[,A~) 

Examining the terms of this expression, we note that 
[nA]4/A[nAl+ 12 as n + cc and that the FCLT governs 
the second and third terms inside the second brackets. 
The second term weakly converges to - A  W(A)/2 by 
the FCLT, but the third term vanishes in probability. 
Combining these facts with the Lemma 1.1 that char- 
acterizes the limiting behavior of the first term, we obtain 

Lemma 1.1. Suppose that {E,/U~} obeys the FCLT. 
Then 

Lemma 1.2. G(A) is a Gaussian process with zero 
mean and covariance function E[G(A)G(s)] = (1/3)(A A 
s ) ~= (1/3)[min(A, s)I3, A, s E (0, 11. Appendix A gives 
the proofs of Lemmas 1.1 and 1.2. 

Although the limiting distribution of Zn(A) is a func- 
tional of Brownian motion, it is analytically tractable 
because the covariance function of G(A) satisfies the 
Markov property by Lemma 1.2; that is, for A > s, 
E[G(A)G(s)] = u(s)v(A), where u(s) = s3/3 and v(A) = 

1. We may therefore use the time-rescaling technique 
of Doob (1949) to transform G(A) to a standard Brown- 
ian motion. 

For this, let a(A) = u(A)lv(A) = A3/3, which is mon- 
otonically increasing with inverse b(A) = (3A)lI3. Then 
G[b(A)] is a standard Brownian motion, because 
E{G[b(A)]) = 0 and var{G[b(A)]) = [b(A)I3/3 = A, and 
for A > s E{G[b(A)] G[b(s)]) = [b(s)I3/3 = s. Since 

where denotes equality in distribution. It follows that 

P { ~ u P , € ~ O , ~ ] ~ G ( ~ ) ~> c) = p{su~o€[o,l]lw(e>l> fl4 .  

Defining 

TI, = max - Pol, (2) 
k 5 n  

we have that lim,, PITln > c] >= P[s~p~, ,~, ,~lW(6)l  
fiC] under Ho. 

This permits construction of an asymptotic test for 
the constancy of the trend coefficient, because it estab- 
lishes that using the hitting probability of Brownian 
motion to approximate a critical value of the TI, statistic 
in (2) delivers a test with the correct size asymptotically. 

Let N be a standard normal random variable; 
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the hitting probability of a Brownian motion is 
(Billingsley 1968, eq. 11.13) 

It is well known that P[~U~,,[,,,~W(A) > c] = 2[1 -
@(c)], where @(.)is the cdf of a normal random vari- 
able. This provides a quick approximation to the critical 
values of the T,, test. For tests at the lo%, 5 % ,  and 
1% significance levels, the critical values are 1.13, 1.29, 
and 1.62, respectively. 

When Pois unknown, we replace it with a consistent 
estimator under Ho, the least squares estimator for the 
entire sample, 0,. Replacing Powith p, in (1) gives 

= ( 6 ~ 0 )1n312([n~l/n)3(P[nA10,). (3) 

It follows that 

ZSl(A) = -1n312([n~lln)3(fi~nAl- PO)( 6 ~ ~ )  

Routine computation shows that GO(A) is a Gaussian 
process with zero mean and cov[GO(A), GO(s)] = s3(l -
A3)/3, for A r s. Because this covariance function also 
satisfies the Markov property, it can be verified that 
fi (1 + A)GO[(A/(l + A))ll3] is a standard Brownian 
motion. The time-rescaling technique yields 

-d 
- s u ~ r € [ o , l ] l ~ ( t ) l l f i ,  

where W0 is the standard Brownian bridge (Billingsley 
1968, pp. 64-65). Defining 

, ,= max (6ao)-1n3'2(kln)31pk- @,I, (4) 
1 s k s n  -1 

lishes that Bmnestablishes that Dmn = 6 + op(l). To we obtain that lim,, P[TY, > c] = ~ [ s u p , , ~ ~ , ~ ~ ~ W ~ ( t ) ~  

In practice, uomust also be replaced by a consistent 
estimator. There is a multitude of consistent estimators 
for uo (e.g., Andrews 1991; Newey and West 1987). 
Use of any of these in place of uo will leave the asymp- 
totic null distribution of TI, and T:, unchanged, so we 
do not further consider the estimation of uohere. Proper 
choice of an estimator for uo, however, is crucially im- 
portant in practice, as our Monte Carlo results in Sec- 
tion 2 illustrate. We summarize the foregoing discussion 
by stating the following theorem. 

Theorem 1.3. Let Y, = a0 + Pot + ~ , ( t= 1, 2, 
. . . , a,, Po E R), and suppose that {E,/U~) obeys 
the FCLT. Then (a) T,, j s~p , , [~ , ,~ l  andW(A)IIfi, 
(b) T R3 s ~ p , , [ ~ , , ~ ~Wo(h)llfi. The conclusions remain 
true if uo is replaced by any estimator &,, 4 uo in 
computing TI,, TR 

Compared to results for nontrending regressors 
(Ploberger et al. 1989), we have entirely analogous re- 
sults, the differences being that TI, and T:, are com- 
puted with scaling n3I2 due to the presence of t as a 
regressor (instead of n1l2 for a nontrending regressor) 
and that a factor of finow appears to adjust the critical 
values used in stationary regression models. 

The usefulness of these tests hinges on their power 
against alternatives of interest. Our focus here is the 
alternative HI.Intuitively, any structural shift must be 
in effect for a nonnegligible proportion of the sample 
if the tests of this section are to have any power. This 
means that m must be a function of n, leading us to 
consider a sequence of alternatives {HI,), 

We consider explicitly the consistency of the T?, test. 
Taking k = m, in (4), we have 

The consistency of the least squares estimator pmnestab-

> fi C] under H,. Critical values for a test based on 
encan therefore be computed using the hitting prob- 
ability of the Brownian bridge divided by fi. 

From Billingsley (1968, eq. 11.39), the hitting prob- 
ability is given by 

x 

P[SU~,,~, ,~,JW~(A)I= 2 ( - l)i+l exp(-2JZc2). > c] 
I =  1 

Kiefer (1959) gave an extensive table for this function. 
For c = 1.223,1.358, and 1.628, the hitting probabilities 
are . l ,  .05, and .01, respectively. Dividing these values 
by fi,the critical values of the c,,test at the lo%,  
5%, and 1% levels are .708, .784, and .940, respectively. 

determine the convergence behavior of P,, we simplify 
the expression ~ , p ,= nC.:= ,tY, - (C.:= ,t)(C.:= ,Y,) with 
some lengthy algebra (provided in Appendix B) to 
obtain 

where d = (p2 - p,), and 8 = lim,,,(m,ln). The 
convergence behavior of 0," and p, permits us to con- 
clude that 
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The treatment for TI, is entirely analogous. This es- 
tablishes the consistency of the tests as summarized in 
the following theorem. 

Theorem 1.4. Suppose that Y,, = a, + P1t + ~ , ( t= 
1, 2, . . . m,), Y,, = a, + P2t + ~ , ( t= m, + 1, . . . 
n, a, ,  a,, P,, P2E R), 6 5 m,ln 5 1 - 6, 0 < S 5 4(n 
= 2, 3, . . .), and that 0 = lim,,(m,ln) exists. If {&,I 
0,) obeys the FCLT and PI f P,, then for c, = o(n3I2) 
(a) PITl, > c,] + 1, as n + w and (b) P[TY, > c,] + 

1, as n -,x .  These conclusions remain true when a, is 
replaced by 6, = Op(nK) and 6, 2 r > 0 with c, = 
~ ( n ~ / ~ - ~ ) ,K E [0, 31. 

Note that an increasing sequence of critical values 
can be used without destroying the consistency of the 
test, thus permitting the probabilities of both Type I 
and Type I1 errors to be driven to 0 as n increases. 
Moreover, note that estimators 6, consistent for uO under 
H, will typically not be consistent for crOunder {H,,); 
however, this causes no difficulty asymptotically as long 
as 6, does not increase too quickly. If {E , )  is a martingale 
difference sequence, then K = 0 is appropriate. The 
case when K > 0 arises in the use of heteroscedasticity 
and autocorrelation-consistent estimators, as pointed 
out by an anonymous referee. 

In general, T,, and Ty, have power against a range 
of other alternatives, as can be shown by extending 
Andrews's (1990) techniques to the present context. We 
omit treatment of these cases here. We proceed, how- 
ever, to analyze the behavior of Ty, when {E,/~,)  is 
integrated of order 1 (1(1)), violating the FCLT as- 
sumption. An interesting special case of this violation 
is that in which Y, is a drifted random walk. 

Accordingly, let Y, = a + Pt + E,(E,  = 2:=,qr, t = 

1,2 ,  . . .), where now {qr/u) obeys the FCLT. We refer 
to this alternative as Hz. Since u: = nP1E(S2) diverges 
(recall that S, = 2:=,~,), 0, in (2) is no longer well 
defined. We proceed, however, to show that the T,, 
statistic is still bounded in probability provided the growth 
rate of u, is scaled appropriately. For simplicity, we 
assume momentarily that {q,/a,) is an iid sequence. 
In this case, 

lim ~Z-~E(S:) = d a: lim [nP3n(n 
n-+ x n-+x 

+ 1)(2n + I)] = (4)~:. 
Because 

and 
[,A1 

n -312 W(r) dr, 2 er3 ul  InA 
, = I  

it follows that 

3fl [2 rW(r) dr - A J: w(r) dr] 

Thus TI, has a well-defined asymptotic distribution even 
when the error process fails to obey the FCLT. Thus a 
test based on this scaled version of TI, against H, would 
not have power one asymptotically. 

If the variance estimator used in constructing the T,, 
statistic is 6: = n-l2:=,(Y, - 6, - fi,t),, however, 
an estimator appropriate when {E) is thought to be a 
martingale difference sequence, the resulting test does 
have power against H,. To see this, let 

Because 

3 60, [2 & rW(r) dr - A I:W(r) dr] 

and n-'&: is OP(1) under H, (see Appendix C), we 
have 

In other words, n - " 2 ~ , ( ~ )  = 0,(1), so that P[T,, > 
c,] -,1 for C, = O(n1I2), where 

f in= max (66n)-1n312(kln)31pk - POI 
k c n  

Similar reasoning applies to Ty, and fy, when {E,) fails 
to obey the FCLT. We have the following result. 

Theorem 1.5. Suppose that Y, = a, + Pot + E,(E, 
= 2:=,q7, a, E R, t = 1, 2, . . .), where {q,lc+l) obeys 
the FCLT. Then, for c, = O(n1I2), (a) p[ f ln  > c,] -, 
1 as n -,w and (b) ~ [ f y ,  > c,] + 1as n +w, where 
62 = n- l  2:= ,( Y, - 6, - B,t),. The conclusions re- 
main true when 62 is replaced with any Op(n) statistic. 
If instead 6: is replaced with 62 = Op(n2), then 
f2,, f!, are bounded in probability. 

Thus flnand f R  also yield consistent tests of the 
null hypothesis that a series is I(0) against the alter- 
native that there is no structural change but {&,) is an 
I(1) process. This reveals an empirical pitfall. If a given 
time series is a drifted random walk rather than a trend- 
stationary series, then we may easily have a significant 
flnor fy, statistic. One should not draw the conclusion 
that there was a structural change on this basis, because 
in fact there may have been no structural break but 
instead the failure of the FCLT. 

The last part of this theorem implies that the test will 
not detect H, with probability one when 6: = Op(n2). 
Estimators with this property may result from use of 
certain of the heteroscedasticity autocorrelation consist- 
ent estimators mentioned previously. In this situation, 
failure to reject should not be interpreted solely as evi- 
dence consistent with a trend-stationary process. The 
data-generating process could also be I(1). 

Despite the simplicity of the tests of this section and 
the pitfalls just mentioned, their potential usefulness 
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cannot be overstated. These or similar tests should be 
routinely applied whenever parameter constancy is 
needed to justify subsequent analysis. For example, if 
Y, is a variable that one is interested in forecasting using 
a potentially misspecified model (such as a time invar- 
iant model), then performing such a test can alert the 
investigator to the possibility of predictive failure. 

1.2 Testing for a Change in Trend Intercept 

The tests derived in Section 1.1 may have little power 
against trend intercept break alternatives of the form 

where a, # a,.To obtain a test sensitive to H3, we 
consider the random function QE(A) = (2uo)-'([nhll 
n)nl"(& ,,,, - &,)(A E [S, 11, 6 > 0), where &, = 
A;1[(C:=lt2)(Z~=ly,> - (Z:=lt)(2f=lryl)]. Given that  
(E,} follows the FCLT and using Lemma 1.1, we find 
that 

Examining the covariance structure of HO(A), we see 
that HO(A) WO(A) for h E [S, I]. This implies that 
lim P[T!, > c]  P[s~p, ,[~,~~lW~(A)l= > c], where 

A test for a change in the trend intercept can be per- 
formed using the T!, statistic, where the critical value 
for the TR test is approximated by the hitting proba- 
bility of a Brownian bridge, without the fladjustment. 
Note that an nl'* scaling is used in T;, in contrast to 
the n3'2 scaling obtained with trending regressor. 

We conclude this section by noting that the previous 
analysis can be extended to test for structural change 
in the cointegration between two Z(1) series (Engle and 
Granger 1987). Let the null hypothesis be 

H,:Y, = a, + POX,+ t-?, 

The alternative of interest is 

where m is unknown. Now the regressor contains a 
stochastic trend rather than a deterministic trend. It was 
shown by Chu and White (1991) that the statistic 

where 

can be used to test the constancy of cointegration, based 
on the fact that T!, 3 s u p , , , o , , l ~ ~ O ( ~ ) ~ l ~under Ho. 
This result is to be expected because a drifted Z(1) series 
is dominated by its time-trend component asymptoti- 
cally. 

2. MONTE CARL0 EXPERIMENTS 

2.1 Size Slmulations 

The purpose of the foregoing theory is to construct 
tests based on Tin and Tyn(i = 1, 2) having correct size 
asymptotically. The way we argue asymptotics is to let 
the time interval between observations converge to 0 ,  
and only by such a device can we have an asymptotic 
distribution in the space of continous functions. To see 
how relevant these asymptotic arguments are, we con- 
duct some Monte Carlo experiments. We use the fol- 
lowing notation: T& is the statistic obtained by replacing 
the unknown u in T!n with the estimator 
bn, where 62 is the usual estimated variance of the or- 
dinary least squares residuals of the corresponding 
regression model and p?, is obtained by replacing the 
unknown uo in T& with 6,,where 6; is a heterosce- 
dasticity and autocorrelation consistent estimator of 
ff;. 


We start with the Fy, (i = 1,2) size simulations for 
an ideal normal iid error. We see from Table 1that the 
empirical sizes of the fyntest are satisfactory, though 
they are slightly smaller than the nominal significance 
level. 

To examine a more interesting case of nonspherical 
error terms, we generate data from Gaussian (autore- 
gressive) AR(1) processes with some selected autore- 
gressive parameters. To estimate a$ ,  we first use the 
Newey-West (1987) consistent estimator in imple-
menting the T:, test. Table 2 displays the empirical size 
of the T R  test with a range of ad hoc choices of trun- 
cation lag. 

We see from Table 2 that the quality of the asymptotic 
approximation in finite samples is generally acceptable, 

Table 1. Empirical Size of f:,, and f ~ , ,Tests 

NOTE: Data are generated by Yt = 5 + .2t + E,; { E ~ )is iid N(0, 1). The number of 
replications = 5,000. N denotes the sample size. 
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Table 2. Empirical Size of 77" Test With Serially Correlated Errors 

NOTE: Data are generated by Yt = 5 + .2t + E!;  ~t = .5et-1 + vt; {vt) is iid N(0, 1) .  The number of replications = 5,000. TL denotes 
an ad hoc choice of truncation lag used in computing the Newey-West estimator. 

given the proper choice of truncation lag. The size can 
be quite bad, however, for an improper lag truncation 
number. For example, in the case of sample size equal 
to 300, the choice of truncation lag 8 delivers satisfac- 
tory empirical size, but the choice of 5 results in 14.2% 
empirical size versus 10% nominal size. These findings 
underscore the importance of having a reliable method 
for choosing the truncation lag. 

Recently, Andrews (1991) has suggested using an au- 
tomatic bandwidth procedure to estimate the truncation 
lag. We use Andrews's automatic bandwidth estimator 
to simulate the T:,, and the T;, statistic; results are 
summarized in Table 3. 

Table 3 reveals how empirical size is affected by the 
underlying autoregressive coefficient p. In particular, 
the T:, test becomes conservative as p get closer to 
unity. In fact, this is theoretically expected. When p = 
.9, Andrews's (1991) procedure yields an optimal fixed 
truncation lag of 34 for sample size 300. The choice 20, 
however, delivers more accurate empirical size (see Chu 
and White 1991). Thus the empirical size resulting from 
truncation lag 34 is too small relative to the nominal 
size. This observation also warns against indiscriminate 
use of the automatic bandwidth procedure to implement 
the T:, test when serious autocorrelation is present. 

2.2 	 Power Simulations 

To simulate the empirical power of the p:, and p?,, 
tests, we generate data from a piecewise trend-
stationary process. Although there is a one-time struc- 
tural change in the trend coefficient, the broken trend 
function is formulated to be continuous everywhere in 
our simulation. As for the power simulation of the 
f R  and p;,, we create data from a model that contains 

Table 3. Empirical Size of 77, and 7:" Tests 
With Automatic Bandwidth 

1 10.25% 4.95% 10.10% 5.03% 
.3 9.75% 5.10% 1 1.98% 6.05% 
.5 9.84% 4.42% 12.45% 5.18% 
.7 9.03% 3.56% 11.25% 4.50% 
.9 7.04% 1.74% 1 0.75% 2.20% 

NOTE: Data are generated by Yt = 5 + .2t + ct; ct = pet-, + vt; {vt) is iid N(0. 1 ) .  The 
sample size = 100; the number of replications = 5.000. 

a one-time discrete jump in trend intercept. Results are 
summarized in Tables 4 and 5. 

There are three parameters in Table 4-the break 
ratio, the magnitude of the change, and the variance- 
of-error term. We observe that the power of the f y ,  
test is quite impressive in the case of iid errors. Power 
of the py, test against alternatives in which the struc- 
tural change occurs near the two ends of the sample is 
found to be low. This conforms well with intuition, 
given the weighting scheme ( k l r ~ ) ~in (4). Though we 
have fixed the magnitude of change in the simulation 
(from p = .2 to .24; see the note to Table 4), results 
not reported here show that for the investigated range 
of values the larger the magnitude of change, the higher 
the power (see Chu and White 1991, fig. 1). 

When positively autocorrelated errors are present, 
the power of the test decreases. Even a slightly auto- 
correlated error has nontrivial negative effect on the 
power (see Table 5). Heuristically, the structural change 
information contained in the sample is obscured by the 
autocorrelation, and the more seriously autocorrelated 
the error, the more slowly is the information revealed. 
This finding confirms the common knowledge that non- 
spherical errors need not destroy the size of the test but 
may affect the power of tests unfavorably. 

3. EMPIRICAL APPLICATION 

3.1 	 Broken Trends in Macroeconomic Time 
Series 

Since Nelson and Plosser's (1982) influential studies 
on the nonstationary nature of major U.S. economic 
time series, the thought that most economic time series 
are well characterized as containing a unit root has been 

Table 4. Empirical Power of 77" and 7;" Tests 

Break 
ratio (r) 10% 

77" 

5% 1 0% 

7~ 

5% 

.2 

.4 

.6 

.8 

.70 
1.oo 
1.OO 
.99 

.55 
1.oo 
1.OO 
.96 

1.OO 
.99 

1.OO 
1.OO 

1.OO 
.95 
.99 
.99 

NOTE: The data for the jp, power simulation are generated from Yt = 5 + .2t + el, for 
t <  100 x rand Yt = 5 + .2t + .04(t - 100 x r) + e t , f o r t r  100 x r. F ~ r t h e f ~ t e s t .  
we generate data from Yt = 5 + .2t + E!, fort < 100 x r and Y, = 3 + .2t + st. fort 2 
100 x i~d N(0, 1 )  in all cases. The sample size = 200; the number ol r. We have { E ~ )  
replications = 2,000. 
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Table 5. Empirical Power of 7:" with Autocorrelated Errors 

rip .o . I  .3 .5 .7 

.2 .70 .50 .34 .19 .09 


.4 1.OO 1.OO .99 .84 .21 


.6 1.OO 1.OO 1.OO .96 .35 


.8 .99 .96 .83 .56 ,18 


NOTE: The sample size = 200; the number of replications = 2,000. Yt = 5 + .2t + ct, 

for t  < 100 x r; Yt = 5 + .2 t + .04(t - 100 x r) + F!, fort z 100 x r: and ct = P E ~ - ~  

+ v,; ( V ~ IIS iid N(O, I). 

overwhelmingly accepted. Perron (1989) challenged this 
view by showing that the standard tests for the unit- 
root hypothesis against the trend-stationary alternative 
are inconsistent if the trend function contains a one- 
time break. Perron examined the evidence for the trend- 
shift hypothesis and obtained some surprising and con- 
troversial results-namely, that for 11 out of 14 eco- 
nomic time series studied by Nelson and Plosser the 
unit-root hypothesis is rejected rather decisively. Hence 
Perron strongly argued that many time series have been 
mistakenly thought to contain a unit root when in fact 
they are better characterized by trend-stationary series 
with structural change. 

In Perron's work, however, the breaks in the trend 
function were assumed known to occur at either the 
Great Depression or the Oil Shock. Such an ad hoc 
specification of breakpoints is problematic and contro- 
versial. Christian0 (1988) and Banerjee, Lumsdaine, 
and Stock (1992) argued that it is more appropriate not 
to assume that the breakpoint is known but rather to 
let the estimation of the breakpoint be an integral part 
of the econometric procedure. Applying their tests for 
the unit root against trend stationarity with unknown 
breakpoint, Banerjee et al. rejected Perron's hypothesis 
and concluded that there is no statistical evidence against 
the unit-root hypothesis for postwar U.S. gross national 
product (GNP). 

We shall use the test statistics cnand p!, to test 
Perron's hypothesis directly. The logic is simply that if 

Chu and White: A Direct Test for Changing Trend 

the hypothesis of trend stationary with structural break 
is correct, we should be able to reject the null hypothesis 
using our finor cntests. Note that Banerjee et al. 
(1992) tested for the unit-root hypothesis against an 
explicit alternative of trend break, whereas we are testing 

for departure from the trend-stationarity hypothesis. 

3.2 Data and Results 

We apply our tests to the data set used by Nelson 
and Plosser (1982) and Perron (1989). The data set 
consists of 14 major macroeconomic series (see Tables 
6 and 7). A detailed description of the data can be found 
in the article by Perron (1989). Following convention, 
we take natural logarithms of each time series except 
the interest rate. 

For each time series Y,, we fit a linear time-trend 
model Y, = a + bt + e, and compute the cn 
and c,statistics as in (4) and (6) with 

where w,, = 1- TI(/+ 1). Since we use Andrews's (1991) 
automatic bandwidth procedure with AR(1) specifica- 
tion fore, to determine the truncation lagl, we refer to the 
resulting truncation lag as ABE (automatic bandwidth 
estimator). Tables 6 and 7 summarize the corresponding 
results for each series. 

Of the 11 series reported in Table 6, the null hypothesis 
of trend-intercept constancy is rejected by the T ! ~test at 
the 10% level or better in 7 cases-real GNP, nominal 
GNP, real per capita GNP, GNP deflator, consumer prices, 
wages, and money stock. The Fnstatistics indicate that 
GNP deflator and consumer prices exhibit trend-slope 
changes as well. Since our Entest is sensitive to structural 
change in trend intercept, we tentatively conclude that for 
these seven series Perron's "Great Crash" hypothesis is 
not contradicted. We do not imply that the Great Crash 
hypothesis is correct because other alternatives are pos- 

Table 6. Tests for Trend Constancy of Eleven Time Series 

Time series N ABE 7% 7;" a b 

Real GNP 
Nominal GNP 
Real per capita GNP 
Industrial production 
Employment 
GNP deflator 
Consumer prices 
Wages 
Money stock 
Velocity 
Interest rate 

NOTE: The columns a and b are the least squares intercept and slope estimates using N obselvations. ABE is the truncation lag 
determined from Andrews's automatic bandwidth esllmatlon procedure. 

a Statistical significance at the 10% level. 

Statistical significance at the 5% level. 

Statistical signlficance at the 1% level. 
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Table 7. Tests for Trend Constancy of Three Time Series 

Time series 

Common stock prices 
Real wages 
Postwar quarterly real GNP 

NOTE: See the note to Table 6. 
a Statistical signif~cance at the 1% level. 

Statistical significance at the 5% level. 

N ABE 

100 27 
71 17 

159 60 

sible. Our use of (T;, however, provides some insurance 
against our being deceived by drifted random walks. 

We report both the T?, and T!, statistics for each of 
the remaining three series in Table 7. Only two of the six 
statistics are significant, the p?, statistic for the common- 
stock price index at the 1% level and the p!, statistic for 
the real wage at the 5% level. 

As previously emphasized, the choice of truncation lag 
is crucial for ensuring proper size of our tests. Estimating 
the truncation lag using an AR(1) specification for resid- 
uals e, is convenient but need not be optimal (see An- 
drews [I9911 for discussion). It is thus useful to see how 
sensitive our previous conclusions are to the choice of the 
truncation lag. In results not tabulated here, we com- 
puted the p!,, statistic for all 14 series using every possible 
truncation lag. Our findings can be summarized as fol- 
lows. 

First, for real GNP, real per capita GNP, consumer 
prices, and real wages, the previous conclusions do not 
hinge on the choice of the truncation lag. Specifically, we 
can reject the null hypothesisfor real GNP at the 5% level 
or better for all possible choices of the truncation lag. We 
also reject the null for the rest of three series at the 10% 
level or better for all truncation lags. Our evidence is thus 
consistent with the Great Crash hypothesis (i.e., a trend 
with a break in level). In contrast with Perron's (1989) 
findings in which the unit-root hypothesis for consumer 
prices is not rejected, we find that the consumer price se- 
ries is potentially characterized by a trend with break in 
trend intercept. 

Next, we have some series semirobust to the choice of 
truncation lag-money stock, velocity, interest rates, 
common stock, and postwar GNP. Given 1= ABE = 35 
in Table 6, we reject the null hypothesis for money stock 
at the 1% level; the rejection of the null hypothesis re- 
mains justified at the 10% level or better for all other 
choices of the truncation lag except for 5 5 1s20. As for 
velocity, interest rates, common stock, and post-war GNP, 
we cannot reject the null at the 10% level for 1= ABE = 
33,l  = ABE = 31,l = ABE = 60,andl  = ABE = 27, 
respectively (see Tables 6 and 7). The previous conclu- 
sions hold at the 10% level or better for all truncation lags 
12 r 1 s  61,4 r 1 5  39.11 r 1 5 44, and 16 5 1 5 77, re- 
spectively. 

Finally, we have five series very sensitive to the choice 
of the truncation lag-nominal GNP, industrial produc- 
tion, employment, GNP deflator, and wages. For GNP 

7:" 7% a b 

O.7ga 1.11 1.04 ,028 
0.62 1 .36b 2.83 .020 
0.66 1.14 7.02 ,008 

deflator and wages, we reject the null hypothesis at the 10% 
level for 1 = ABE = 29. If we change the truncation lag 
from 29 to 28, however, we fail to reject the trend-con- 
stancy hypothesis. The employment series is equally sen- 
sitive. We fail to reject the null hypothesis at 1 = ABE = 
20, but do reject the null at 1 = 21. Although nominal GNP 
and industrial production are a little less sensitive, the 
previous rejection for nominal GNP does not occur for 7 
5 1 5  22, but the previous nonrejection for industrial pro- 
duction occurs only for 3 s1s40. 

We also computed the c,,statistic for a variety of val- 
ues of the truncation lag for common stock, real wages, and 
postwar GNP. Previously, we failed to reject the null hy- 
pothesis of trend constancy at 1 = ABE = 17 and 1 = ABE 
= 60 for real wages and postwar GNP, respectively. This 
finding is not reversed for 8 5 1Is 37 and 16 5 11s 77, re- 
spectively. For common stock, the rejection at 1 = ABE 
= 27 is not maintained for 20 r 15 25. 

For velocity, interest rates, and postwar GNP, failure 
to reject the null hypothesis of trend-slope constancy is not 
very sensitive to the choice of the truncation lag. Al- 
though the null hypothesis cannot be rejected for these 
three series, care is needed in interpreting such results. Our 
failure to reject the null hypothesis may result from a lack 
of power due to asmall magnitude of change or severe au- 
tocorrelation or both. Moreover, if the error process for 
the given time series contains a unit root (i.e., a drifted 
random walk), Andrews's automatic bandwidth esti- 
mator (T; appears to be 0,(n2). As a consequence of 
Theorem 1.5, T?,will be bounded in probability. Instead 
of a complicated theoretical analysis for the T R  statistic 
when the FCLTfails, we have generated data from a drifted 
random walk for 10,000 replications and obtained the 
empirical distribution of the finstatistic (not reported 
here). Our simulation results show that the T?, test is likely 
to be insignificant if Y, is in fact a drifted random walk. Thus 
failure to reject the null hypothesis using the Tynstatistic 
does not necessarily imply that the given time series is 
constant-trend stationary. An insignificant enstatistic is 
consistent witheither (a) trendstationarity with I(0) error 
termor (b) aunit root. Discrimination between trend sta- 
tionarity and a unit root is a separate issue, beyond the scope 
of our analysis here. 

To summarize, we find that for real capita GNP, con- 
sumer prices, and real wages before World War I1 Per- 
ron's Great Crash hypothesis is not contradicted. The 
trend-shift hypothesis is an attractive characterization for 



297 Chu and White: A Direct Test for Changing Trend 

pre-war real GNP but not for post-war real GNP. Money 
stock seems to exhibit a trend break in intercept. For ve-
locity, interest rates, and common stock, the evidence of 
trend break is weak. Our test is not definitive for the five 
series-nominal GNP, industrial production, employ-
ment, GNP deflator, and wages-because the test out-
comes of these series are very sensitive to the trunca-
tion lag. 

4. CONCLUDING REMARKS 

In this article, we have considered tests for structural 
change in trend slope and intercept. Perhaps surpris-
ingly, the critical values from the asymptotic null dis-
tribution for testing structural change in nonstationary 
time series (e.g., testing for change in trend slope or 
cointegration) differs from those in the stationary time 
series models merely by a constant of proportionality, 
d. 


The tests proposed in this article are generally con-
servative. This is perhaps due to our weak requirements 
on the error process. To remedy this, prewhitening the 
residuals may be helpful. This prewhitening introduces 
its own complications, so we leave the study of such 
methods to other work. 

Finally, we caution that the empirical maximum or 
the empirical first hitting time of the pynstatistic is not 
very accurate in locating the breakpoint, unless the 
structural break occurs around the middle of the sam-
ple. Proper parameterization of the error process can 
improve accuracy in locating the true break (see Hink-
ley 1970; Kim and Siegmund 1989). Nevertheless, the 
tests considered in this article appear to have nontrivial 
power against general alternatives of parameter non-
constancy. Because rejecting the null hypothesis does 
not necessarily imply one-time structural change, care 
is warranted in drawing conclusions about the true data-
generating process. 
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APPENDIX A: PROOFS OF LEMMAS 1.1 and 1.2 

A.1 Proof of Lemma 1.1 

Let Rn(A) = @-In- 112s
[nAl 

= 
-

u-1n-112 x!nAlE,. Ob-
serve that 

u - ln- 112S,,AldA= Rn(r) dr.1;''

r = l  

The left side of the preceding equation is equal to 

k - 1  k - 1  
-- n-32u-1 kEt- ts,] 

r =  1 

Hence 

- R,,(r)dr 3 hW(h)- [W(r)dr. 

A.2 Proof of Lemma 1.2 

The covariance function of G(A) is given by 

It suffices to perform the analysis using the following 
conditions. Assume that {e l )  is iid with mean 0 and 
variance 1 and that q and k are such that qln -, s, 
kln + A ,  and k > q.Then 

= n-lE[n-112S,(n-112SI+ n-112S2+ . . . + n-112Sk_l ) ]  

= ( l ln ) [ ( l /n )+ 2( l /n )  + . . . + q(l1n) + . . . + q(l ln)]  
P 

( k  - q )  terms 

= (lln2)(1+ 2 + . . . + q )  + (lln2)q(k- q - 1)  

= ( l /n2)q(q+ 1)/2 + ( l ln2)(kq- q2 - q )  

-+ s2/2 + As - s2 = As - s2/2. 
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Similarly, we compute that It follows that 

and 

Using ( A . 2 ) - ( A . 4 )  to evaluate ( A . l ) ,  we obtain 

( A l )  = As2 - 2s(As - s2/2)  - 2As2/2 

+ 4[s3/3 + (s2A - s3)/2]  = s3/3.  

APPENDIX B: ALGEBRAIC DERIVATION OF 

EQUATION (5) 


For notational convenience, we sometimes write mn 
as m ( n ) .  Because 

and 

we may substitute these results into the expression for 
A,D, and obtain 

where d = ( p ,  - PI).Because nXZ',('I)tlA,,nX:, + ,tlAn, 
and mn(C:=,t)lAnall converge to 0 as n+ and because 
nC:= t2/An3 4 ,  @:= t)2/An+ 3 ,nX:=, ts,/A,, 4 0, 
(C:=, t)(C:=, &,)/A, 4 0, lim,, nXTi',('I)t2/An = 403 ,  
and lim,, t)(Cz',('I) t)lAn = 36l2, where 8 = 

lim,, mnln,it follows that f in  = P2 - 4d03 + 3d02 + 
o , ( l ) .  

APPENDIX C: PROOF THAT n-'&: IS 0,(1) 

All of the following summations are indexed by t 
running from 1 to n .  By definition, 

Straightforward algebra gives 

Hence 

Multiplying n-* through the preceding equation, we 
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have 

- [12/n(n  + l ) ( n  - l ) ] n 3  n - 5 1 2 x  ta,t 1 

[Received January 1991. Revised February 1992.1 
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